
Managing Remote Hosts
Creating Roles
Creating Playbooks

Ansible

On this page, I'll describe how to configure Ansible to manage a remote host. In the context of this
page, a controller is the ansible node that executes commands on remote hosts, while a client is a
host which accepts commands from some controller.

The requirements for running / creating an ansible controller for a set of clients is as follows -

controller
has ansible
create ssh key as the ansible user

ssh-copy-id <worker>
should be able to ssh with no password - ssh <host / IP> as ansible user

If the above does not work, create /home/USER/.ssh/config and add
IdentityFile /path/to/Private.key , this will pass the key automatically when
connecting as USER.
Ensure the host you are connecting to has the connecting key within the
~/.ssh/authorized_keys file.
restart sshd.service - sudo systemctl restart sshd.service

client
has ansible
has a known password, but can sudo without one.

<user> ALL=(ALL:ALL) NOPASSWD:ALL within sudoers

This section will configure a new user to be our Ansible controller -

controller
has ansible
create ssh key as the ansible user
ssh-copy-id <worker>
should be able to ssh with no password - ssh <host / IP> as ansible user

If the above does not work, create /home/USER/.ssh/config and add IdentityFile
/path/to/Private.key , this will pass the key automatically when connecting as
USER.
Ensure the host you are connecting to has the connecting key within the
~/.ssh/authorized_keys file.
restart sshd.service - sudo systemctl restart sshd.service

Managing Remote Hosts
Basic Requirements

Creating a Controller

First, install Ansible -

On the controller we plan to use to manage remote hosts, create a user that will carry out all
Ansible commands.

Now that we created our user, we need to configure sudo, add user ALL=(ALL:ALL) ALL to the
following file -

Add or edit our custom sudoers config to allow for sudo with no password

Add the following line -

sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt update -y
sudo apt install software-properties-common -y && sudo apt install ansible -y

Creating Controller Ansible User

sudo adduser username
[sudo] password for admin:
ssh-rsa
AAAeAB3NXyXeAAADAQABAAABXwxAQDXndHlHw2DxXMk1thdTsSJWoRxXXGl5jXXMGaRta1sdprzg/sXJAdding
user `username' ...
Port 22
Adding new group `username' (1000) ...
Adding new user `username' (1000) with group `username' ...
Creating home directory `/home/username' ...
Copying files from `/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for username
Enter the new value, or press ENTER for the default
 Full Name []:
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
Is the information correct? [Y/n] y

Controller Sudo Configuration

sudo visudo -f /etc/sudoers.d/mySudoers

Secure the new user's User / Group ID's by defining a custom user and group ID

Change file permissions created when we added the user. Here we are just updating user files to
reflect new IDs. Errors are ok

Change all files to reference the correct group -

Change all files to reference the correct user -

That's it! Further customization for managing our remote servers will take place in defining hosts in
the Ansible inventory, creating playbooks, and defining / applying roles. For now, we should
configure a remote host to accept commands from this new Ansible controller

kansible ALL=(ALL:ALL) NOPASSWD:ALL

Add our new user to sudo group
admin@server:~$ sudo vigr
You have modified /etc/group.
You may need to modify /etc/gshadow for consistency.
Please use the command 'vigr -s' to do so.
admin@server:~$ sudo vigr -s
You have modified /etc/gshadow.
You may need to modify /etc/group for consistency.
Please use the command 'vigr' to do so.

sudo usermod -u 61182 username
sudo groupmod -g 61181 username

sudo find / -group 1000 -exec chgrp -h username {} \;

find: ‘/proc/18580/task/18580/fd/6’: No such file or directory
find: ‘/proc/18580/task/18580/fdinfo/6’: No such file or directory
find: ‘/proc/18580/fd/5’: No such file or directory
find: ‘/proc/18580/fdinfo/5’: No such file or directory

sudo find / -user 1000 -exec chown -h username {} \;

find: ‘/proc/18611/task/18611/fd/6’: No such file or directory
find: ‘/proc/18611/task/18611/fdinfo/6’: No such file or directory
find: ‘/proc/18611/fd/5’: No such file or directory
find: ‘/proc/18611/fdinfo/5’: No such file or directory

Below, we configure a user to authenticate with on the remote host we want to admin, known as
our Ansible client -

client
has ansible
has a known password, but can sudo without one.

<user> ALL=(ALL:ALL) NOPASSWD:ALL within sudoers

To create an Ansible client, you'll need a user with a known password that can sudo without one.
Also, we will need to install our publickey from the controller we created above into this users
~/.ssh/authorized_keys file so Ansible can ssh and sudo on this worker with only a private key.

First, install Ansible on the remote client -

To speed this up, I used a script I wrote to create a user with a custom userID, and configure sudo.
Get it here, or manually create the user as I did above for the Ansible controller.

If we run the script with no arguments, we see the help text -

So we can add a user with the following command -

Creating Ansible Clients

sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt update -y
sudo apt install software-properties-common -y && sudo apt install ansible -y

Creating Ansible User for Remote Client

sudo ./adduser.sh ansible
Illegal number of parameters.
Usage: sudo ./adduser.sh <username> <groupid>

Available groupd IDs:
60001......61183 	Unused | 65520...............65533 Unused
65536.....524287 	Unused | 1879048191.....2147483647 Unused

sudo ./adduser.sh ansible 524280

Adding user `ansible' ...
Adding new group `ansible' (524280) ...
Adding new user `ansible' (524280) with group `ansible' ...
Creating home directory `/home/ansible' ...

https://gitlab.com/shaunrd0/klips/-/tree/master/scripts

Now, we need to configure the Sudoers file to allow our user to sudo without the password, even
though we did configure a password during user setup.

Assuming your username is ansible , add the following line to this file. -

Now the ansible user can sudo with no prompt for password! Now we just need to add our
controller's SSH key to the .ssh/authorized_keys file within the new ansible user's home directory.

Login as the user, and add the publickey that Ansible will pass for authentication.

Copying files from `/etc/skel' ...

Enter 1 if ansible should have sudo privileges. Any other value will continue and make no changes
1

Configuring sudo for ansible...

Enter 1 to set a password for ansible, any other value will exit with no password set
1

Changing password for ansible...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Configure Sudo for Remote Client

sudo visudo -f /etc/sudoers.d/mySudoers

ansible ALL=(ALL:ALL) NOPASSWD:ALL

Be sure to either run the sudo visudo -f /etc/sudoers.d/mySudoers or append the line above to the
end of the default sudoers file if you ran only sudo visudo - This is a sequential configuration
so the order of the statements is important, and we want to ensure that nothing overrides
our choice to disable sudo passwords on this user

sudo -iu username
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.
username@server:~$ mkdir .ssh
username@server:~$ sudo vim .ssh/authorized_keys

Verify sshd_config, and restart sshd.service

Once you have added your key to the authorized_keys file, determine if you have or plan to have
any custom PAM configurations on your host, and if so - add the following module to bypass any
future changes.

If you have or plan to have any custom PAM configurations on your host, you will need to change
PAM sshd authentication configuration as follows to allow our user to bypass other modules

In /etc/pam.d/sshd , we can add the following line to allow for a list of users past any other modules
configured on the server. Be sure to add this line at the top of our configuration file, so it is handled
before any other module.

Now we can add our user to the pam_userlist.so configured in the changes made above

In this /etc/authusers file, we simply list users that can bypass further PAM configurations -

Be sure you add your hose IP and port to your /etc/ansible/hosts file, syntax is seen below -

sudo vim /etc/ssh/sshd_config
sudo systemctl restart sshd.service

Adding Listfile Module (PAM)

sudo vim /etc/pam.d/sshd

auth sufficient pam_listfile.so item=user sense=allow file=/etc/authusers

sudo vim /etc/authusers

user
otheruser
thirduser

Updating hosts

[group]
www.domain.com
sub.domain.com:22
0.0.0.0
127.0.0.1:22

That's it! Now just sudo apt install ansible and ssh to your Ansible controller to test out the
configuration.

From this point, the user is fully configured to bypass all security settings only if the ansible
controller is attempting to connect, allowing full sudo access. To test this, run the following
command and look for similar output -

This test says that the host was not changed ("changed": false), and the server accepted our
connection ("ping":"pong")

[othergroup]
sub.domain.com:22
127.0.0.1:22

[nginx-server]
sub.domain.com:22

[docker-host]
127.0.0.1:22

[dev]
sub.domain.com:22

Testing Ansible client

ansible dev -m ping
The authenticity of host '159.203.190.63 (159.203.190.63)' can't be established.
ECDSA key fingerprint is SHA256:jDxFV7KA00wNIdpG40ppvW2RobNXyPeItdi4jL3h78s.
Are you sure you want to continue connecting (yes/no)? yes
worker.domain.com | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python"
 },
 "changed": false,
 "ping": "pong"
}

Ansible has a built in tool ansible-galaxy which allows us to quickly create a set of folders and files
that are needed in the creation of an Ansible role.

Simply run ansible-galaxy init rolename --offline and a folder will be created within your current
directory that contains the basic structure of an Ansible role. Within this directory, we can easily
pick and choose which components we will need for our role.

To begin, we will create a simple role for installing and configuring a simple nginx server. Navigate
within your role, which we will assume is simply called nginx-role

Within nginx-role/tasks/main.yml we include the following -

This task assumes that within the nginx-role/tasks/ directory we also have the files install.yml ,
configure.yml , and service.yml - See the below snippets for examples of how these files could look,
depending on your scenario.
Within the nginx-role/tasks/ directory, create the following files -

Create a nginx-role/tasks/install.yml task for installing nginx and any other required packages if
needed

Create a nginx-role/tasks/configure.yml task for templating various configuration files needed to
configure an nginx webserver

Creating Roles
Ansible Galaxy

Creating NGINX Roles

Define Tasks

tasks file for /etc/ansible/roles/nginx
- import_tasks: install.yml
- import_tasks: configure.yml
- import_tasks: service.yml

- name: Install nginx Package
apt: name=nginx state=latest

Create a task nginx-role/tasks/service.yml for starting the nginx service

Now we have defined all the tasks that Ansible needs to carryout in order to create a new nginx
host. All thats left to do is ensure that the tasks we created above have all the resources we said
would be available when the role is ran on a host.

In the tasks above, notice the notify: -restart nginx within configure.yml. Here, we have declared that
this task makes changes that require nginx to be restarted in order to be applied. So, we create the
handler task below to carry out the restart nginx task that we have notified of our changes.
To set this up, create the following nginx-role/handlers/main.yml configuration

Ansible will need to refer to the templates / files we declared in the above tasks -
Add them within the nginx-role/files/ directory

Create the following nginx-role/files/nginx.conf

- name: Copy nginx configuration file
 template: src=files/nginx.conf dest=/etc/nginx/nginx.conf
- name: Copy index.html file
 template: src=files/index.html dest=/var/www/html
 notify:
 - restart nginx

- name: Start and enable nginx service
 service: name=nginx state=restarted enabled=yes

Define Handlers

handlers file for /etc/ansible/roles/nginx
- name: restart nginx
 service: name=nginx state=restarted

Define Templates / Files

user www-data;
worker_processes auto;
pid /run/nginx.pid;

events { }

Then we can create a custom template at nginx-role/files/index.html for our landing page to verify
things are working.

http {
 include mime.types;

 # Basic Server Configuration
 server {
 listen 80;
 server_tokens off;
 server_name {{ domain_name }};

 location / {
 root {{ nginx_root_dir }};
 index {{ index_files }};
 }

 # Uncomment to pass for SSL
 #return 301 https://$host$request_uri;
 }
}

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to nginx!</title>
 <style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
 </style>
 </head>
 <body>
 <h1>Klips!</h1>
 <p>If you see this page, the nginx web server is successfully installed and working. Further configuration is
required.</p>
 <p>For online documentation and support please refer to

Last, we need to define the Ansible defaults we referenced in the above configurations {{
variable_name }} is a variable within Ansible, these can be used to create roles that can be used
dynamically or easily reconfigured and reapplied to different scenarios.
Create the following main.yml file in nginx-role/defaults

Ansible has a wide range of variables, or facts, that it collects on the hosts within its inventory. To
see a complete list of all the facts available for a host, run the following

This will print a ton of information, all of which is available for use within ansible templates by
calling a variable corresponding to the fact name. For example, if we wanted the fact
ansible_hostname and ansible_fqdn , we call them as {{ ansible_hostname }} or {{ ansible_fqdn }} . When
these variables are ran within a playbook, ansible will insert the values of these variables
depending on the host the task is running on.

That's it! Now all we need to do is create an inventory / hosts file and run a playbook using our new
role -

Create your ansible host file at /etc/ansible/hosts with the relevant information for your environment

 nginx.org.

 Commercial support is available at
 nginx.com.</p>
 <p>Thank you for using nginx.</p>
 </body>
</html>

Define Variables / Defaults

defaults file for /etc/ansible/roles/nginx
#
domain_name: "localhost"
nginx_root_dir: "/var/www/html/"
index_files: "index.html index.htm"

ansible hostname -m setup

Using Ansible Roles

This is the default ansible 'hosts' file.
#
It should live in /etc/ansible/hosts

Create the playbook /etc/ansible/nginx.yml to kick off our role using the role information and groups
entered above within the hosts file.

Now from within /etc/ansible/ , simply run ansible-playbook nginx.yml and our tasks configured above
will be carried out on the server defined in the hosts file above.

If you are testing using SSL, be sure to use the --dry-run argument until your configurations are
tested and working correctly.

[group]
www.domain.com
sub.domain.com:22
0.0.0.0
127.0.0.1:22

[othergroup]
sub.domain.com:22
127.0.0.1:22

[nginx-server]
sub.domain.com:22

- hosts: nginx-server
 become: yes
 roles:
 - nginx

sudo certbot certonly -d domain.com -d www.domain.com --dry-run --standalone --agree-tos -m some-
email@domain.com

First, we should be sure that ansible is configured correctly, to run commands on a server or a
group of servers within the /etc/ansible/hosts file, run any of the below commands

While the above is an example of running bash commands on remote hosts ad-hoc via the
commandline, you can also run ansible modules from the commandline in a similar way -

Here, we grab file.txt from a remote host and copy it to our local home directory. Where -m is
selecting which module to use and -a is providing the options that you would specify within a
normal playbook via a command. Be sure to enclose any module options after -a with double
quotes or the command will fail. We use flat=yes to tell Ansible that we just want the file, and not
to rebuild the directory from the remote host. flat defaults to no , which would result in this
command building out the full directory
/home/localuser/www.remotedomain.com/home/remoteuser/path/file.txt on our local host. See the Ansible
documentation for each module for more information on their arguments. Here's a link to the
documentation for the fetch module

For the above command, we used the fetch module, which may not work for directories and may
consume a lot of memory if you are transferring a large file. For example, I experienced issues with
this when transferring large database backup files between hosts. If this is your use case, I would
recommend checking out the synchronize module documentation.

As an example of an ad-hoc synchronize command, I have used this in the past to retrieve fail2ban
configurations on a remote host. Note the mode=pull parameter that tells ansible that we want to
get the files from the remote host and place them at the local destination. By default, mode is set
to push , which would attempt to copy files from our local host and send them to a directory on the

Creating Playbooks
Ad-Hoc Commands

ansible -m ping hostname
ansible -m ping 134.23.4.5

ansible -a "sudo ls /" hostname
ansible -a "sudo ls /" 134.23.4.5

ansible -a "free -h" hostname
ansible -a "free -h" 134.23.4.5

ansible remotehostname -m fetch -a "src=/home/remoteuser/path/file.txt dest=/home/localuser/ flat=yes"

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/fetch_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/fetch_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/posix/synchronize_module.html

remote host.

Ansible can be configured to carry out tedious or otherwise common tasks on any number of hosts,
as we see below in the example playbook where Ansible is being used to backup an instance of
Bookstack.

Here, we use scp instead of Ansible's Fetch module to save memory on the small host that runs
the BookStack you are viewing. When fetching large files, memory errors can be encountered so
here we have worked around the module using an alternative method for transferring our files.

Here is another example, using ansible to synchronize the fail2ban configurations used between
multiple hosts. This allows us to configure one host, which is the local host that runs the playbook,
and once we have configured this host correctly we can just run the play and push our changes to
a group of hosts. Note that hostgroup should be specified in the local /etc/ansible/hosts file, or ansible
will not be able to run the play. Also notice that the src directories in this playbook are relative to
the path of the playbook itself. This allows me to store custom fail2ban configurations for different
groups of host alongside this playbook to avoid configuring fail2ban to monitor services that don't
exist on the system. If you try to monitor a service that does not exist, fail2ban will fail to reload.

ansible -m synchronize remotehostname -b -a "src=/etc/fail2ban/filter.d/ dest=/some/local/directory/fail2ban/
mode=pull"

Creating Playbooks

- hosts: bookstack
 become: yes
 tasks:
 - name: Backup Bookstack container files
 command: tar -cvzf bookstack-backup.tar.gz /home/admin/bookstack
 - name: Fetch backup files from remote host
 command: scp -P 2222 -i /home/username/.ssh/id_rsa /home/admin/bookstack-backup.tar.gz
admin@sub.domain.com:/home/admin/backups/bookstack/

- hosts: hostgroup
 become: yes
 tasks:
 - name: Copy custom fail2ban filters
 synchronize:
 mode: push
 src: fail2ban/filter.d/

 dest: /etc/fail2ban/filter.d/
 - name: Copy custom fail2ban jail.local
 synchronize:
 mode: push
 src: fail2ban/jail.local
 dest: /etc/fail2ban/
 - name: Reload fail2ban service
 ansible.builtin.service:
 name: fail2ban
 state: reloaded
 - name: Checking status of fail2ban service after restart
 command: systemctl status fail2ban
 register: result
 - name: Showing fail2ban status report
 debug:
 var: result

Be careful when synchronizing configurations in this way, hosts can be configured with
different services which could result in the fail2ban service failing to reload when it is unable
to find the related log files. For this reason, I use a seperate directory to configure fail2ban
for hosts with similar filters. In my case, my host that runs the ansible playbooks does not
have nginx installed, so copying over configurations for nginx jails will result in fail2ban
failing to reload.

